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Abstract

Background: Numerous methods exist to analyze complex environmental mixtures in health studies. As an
illustration of the different uses of mixture methods, we employed methods geared toward distinct research questions
concerning persistent organic chemicals (POPs) as a mixture and leukocyte telomere length (LTL) as an outcome.

Methods: With information on 18 POPs and LTL among 1,003 U.S. adults (NHANES, 2001–2002), we used
unsupervised methods including clustering to identify profiles of similarly exposed participants, and Principal
Component Analysis (PCA) and Exploratory Factor Analysis (EFA) to identify common exposure patterns. We also
employed supervised learning techniques, including penalized , weighted quantile sum (WQS), and Bayesian kernel
machine (BKMR) regressions, to identify potentially toxic agents, and characterize nonlinear associations, interactions,
and the overall mixture effect.

Results: Clustering separated participants into high, medium, and low POP exposure groups; longer log-LTL was
found among those with high exposure. The first PCA component represented overall POP exposure and was
positively associated with log-LTL. Two EFA factors, one representing furans and the other PCBs 126 and 118, were
positively associated with log-LTL. Penalized regression methods selected three congeners in common (PCB 126, PCB
118, and furan 2,3,4,7,8-pncdf) as potentially toxic agents. WQS found a positive overall effect of the POP mixture and
identified six POPs as potentially toxic agents (furans 1,2,3,4,6,7,8-hxcdf, 2,3,4,7,8-pncdf, and 1,2,3,6,7,8-hxcdf, and PCBs
99, 126, 169). BKMR found a positive linear association with furan 2,3,4,7,8-pncdf, suggestive evidence of linear
associations with PCBs 126 and 169, and a positive overall effect of the mixture, but no interactions among congeners.

Conclusions: Using different methods, we identified patterns of POP exposure, potentially toxic agents, the absence
of interaction, and estimated the overall mixture effect. These applications and results may serve as a guide for
mixture method selection based on specific research questions.
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Introduction
Environmental exposures play an important role in indi-
vidual and population health. Traditionally, epidemiol-
ogists and toxicologists have focused on studying the
toxicity of single environmental compounds and their
health effects. However, every day we are simultaneously
exposed to thousands of environmental contaminants
which potentially interact and affect health differently as
mixture components. More studies now focus on evalu-
ating exposure to environmental mixtures, and new sta-
tistical methods are being adapted and developed for this
task. These newer methods—some adapted from statis-
tical machine learning and data science fields and some
developed specifically for environmental mixtures—aim
to overcome challenges that are incurred by more tra-
ditional biostatistical methods (e.g., high dimensional-
ity, multi-collinearity, and multiple comparisons). Current
and future methods should be employed with a specific
research question in mind; as different methods exist to
answer different questions, results from analyses using
different methods are expected to vary.
In August 2018, the Columbia University Mailman

School of Public Health Department of Environ-
mental Health Sciences hosted a two-day Mixtures
Workshop to introduce mixtures methods to envi-
ronmental health science researchers [1]. During the
Workshop, we—environmental epidemiologists and
biostatisticians—came together to teach and discuss
with a widely diverse scientific audience the major sta-
tistical methods currently used to study mixtures. The
Workshop encompassed unsupervised methods such
as clustering, principal component analysis (PCA), and
exploratory factor analysis (EFA); and supervised meth-
ods such as variable selection (lasso, elastic net, and
group lasso), weighted quantile sum (WQS) regression,
and Bayesian kernel machine regression (BKMR). WQS
and BKMR were specifically developed for environmental
mixtures, while the other methods have been adapted
from other fields. The Workshop focused on discussing
each method’s statistical background, type of research
question(s) it best addresses, and R packages available
for its implementation. Our aim is to contribute to a
better understanding of appropriate uses of mixture
methods based on the research questions each method
best answers.
To illustrate the methods discussed as part of thisWork-

shop, it was important to use a publicly available real
dataset (i.e., not simulated data) with high-dimensional
environmental exposures, a biologically-relevant health
outcome, and multiple plausible research questions.
Given these criteria, we chose the paper by Mitro et
al. that uses the 2001–2002 National Health and Nutri-
tion Examination Survey (NHANES) dataset to inves-
tigate the association between exposure to persistent

organic pollutants (POPs) with high affinity to the aryl
hydrocarbon receptor (AhR) and longer leukocyte telom-
ere length (LTL) [2]. The study’s results provide insight
into a potential mechanism underlying poly-chlorinated
biphenyl- (PCB-) and dioxin-related carcinogenesis medi-
ated by activation of AhR and subsequent telomerase
expression. However, Mitro et al. used potency-weighted
sums, resulting in loss of information, which certain mix-
tures methods address [2]. Using the mixture methods
previously listed, we tested the association between LTL
and exposure to the same mixture of POPs analyzed by
Mitro et al. [2]. We note, that although some of these
methods have been used for prediction in other fields, our
focus was not on prediction, but rather to understand how
exposure to this mixture may impact LTL. In this paper,
we describe the results we obtained using each method
and how they compare to one another and to the results
obtained by Mitro et al. [2].
Understanding the toxicity of environmental mixtures is

pivotal for developing new policies and improved strate-
gies to minimize toxic exposures. Thus, the Workshop’s
overall objective, and consequently also the goal of this
paper, is to expand the understanding of the appropriate
use of existingmethods to assess exposure to environmen-
tal mixtures by presenting a set of mixture methods as
examples to address different research questions.

Methods
Study population
For our analyses, we used the same population used in
the original paper by Mitro et al. [2]. Briefly, we used
the 2001–2002 NHANES cycle, for which 11,039 people
were interviewed. Of those over twenty years of age who
provided blood samples and consented to DNA analysis,
sufficient stored samples to estimate telomere length were
available for 4,260 participants. From this population,
we excluded individuals without environmental chemical
analysis data (n = 2,850) or who were missing data on
covariates (body mass index (BMI) (n = 70), education (n
= 2), and serum cotinine (n = 8)). We further removed
participants with any missing values for individual PCBs,
dioxins, or furans (n = 327), resulting in a final study
population of 1,003 participants, identical to the smallest
sub-sample Mitro et al. included in the original analyses
[2]. Participants provided written informed consent, and
the institutional review board of the National Center for
Health Statistics approved the survey [3].

Exposure assessment
Exposure assessment of PCBs, dioxins, and furans
has been described previously [2]. Briefly, congeners
were isolated from serum samples using a C18 solid
phase extraction. Analytical runs of all congeners were
blinded and included blanks and quality control samples.
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All samples were measured using high-resolution gas
chromatography/isotope-dilution high-resolution mass
spectrometry [4, 5]. Limits of detection (LOD) were typi-
cally ∼2 ng/g and varied according to serum volume. The
LOD range for each congener was reported by Mitro et
al. [2]. Coefficients of variation differed by congener and
sample lot [4, 5]. Congeners were adjusted for serum lipids
which were calculated using an enzymatic summation
method [6].

Telomere length measurement
LTL measurement has been described previously [2].
Briefly, purified DNA was extracted from whole blood
using the Puregene (D-50K) kit protocol (Gentra Systems,
Inc., Minneapolis, MN) and stored at −80◦C. The quanti-
tative polymerase chain reaction (qPCR)methodwas used
to measure telomere length relative to standard reference
DNA (T/S ratio) [7, 8]. Samples were assayed three times
in duplicate wells, producing six data points which were
averaged to calculate mean T/S ratios [9]. Analytical runs
were blinded, and the CDC conducted a quality control
review [2].

Statistical analysis
All POP values were lipid-adjusted by the U.S. Centers
for Disease Control and Prevention (CDC) [2, 4–9]. We
included a total of eighteen congeners in all analyses:
eight non–dioxin-like PCBs, two non–ortho-substituted
PCBs, one mono–ortho-substituted PCB, three chlori-
nated dibenzo-p-dioxins, and four dibenzo-furans (see
Additional file 1: Table S4 for the full list).
We excluded congeners whose concentrations were

detected in fewer than 60% of samples [2]. For all remain-
ing congeners that were included in our analyses with
values below the LOD, we used the sample-specific LOD
divided by the square root of two, as provided by the
CDC [4, 5]. Single substitution of values below the LOD
were performed to retain comparability with the original
analysis [2].
We present the methods and results of our analyses

in two groups: supervised and unsupervised methods.
Unsupervised methods find a solution independently of
any outcome(s) of interest, usually by reducing the dimen-
sionality of the exposure matrix. This can be achieved
by grouping exposures or by grouping observations (e.g.,
individuals in a cohort study), and is often performed as
a preliminary or exploratory step. Supervised methods,
conversely, allow the outcome of interest to inform the
solution.
All unsupervised methods include the eighteen con-

geners of interest but do not include LTL to inform
the solution nor control for covariates. The solution of
these methods (clusters, components, or factors) were
subsequently included in health models using LTL as

the outcome and adjusting for all covariates included
by Mitro et al. [2]: age, age2, sex, race/ethnicity (non-
Hispanic white, non-Hispanic black, Mexican American,
other), educational attainment (less than high school,
high school graduate, some college, college or more),
BMI (<25, 25–29.9, ≥ 30), serum cotinine, and blood
cell count and distribution (white blood cell count,
percent lymphocytes, percent monocytes, percent neu-
trophils, percent eosinophils, and percent basophils).
All supervised methods include the eighteen congeners,
LTL as the outcome, and adjust for the same covari-
ates as listed above. POPs, LTL, and serum cotinine
were log-transformed in all analyses to enhance com-
parability with the original study. While NHANES uses
a probability-based sampling method to represent the
non-institutionalized U.S. population [3], we did not
include sampling weights in our analyses because our
goal was to present these methods and not to obtain US-
generalizable results. All analyses were conducted in R
version 3.5.1, and all code, results, and graphs are avail-
able online at https://github.com/lizzyagibson/Mixtures.
Workshop.2018. Additionally, available functions and
packages in R and useful resources (i.e., articles and text-
books) are detailed in Additional file 1: Table S1.

Unsupervisedmethods
Clustering is a dimensionality reduction technique used
to identify distinct homogeneous subgroups in a given
population [10, p. 385], i.e., the dataset is partitioned in
a way that the most similar observations are grouped
together. For mixtures analyses, clustering can be used to
identify specific population subgroups that share a sim-
ilar exposure profile. Although many different clustering
methods exist, for this application we focused on the
two most popular approaches: k-means and hierarchical
clustering [10, p. 386].
For k-means, using the 18 log-transformed POPs, we

evaluated the solutions of multiple cluster numbers (e.g.,
2, 3, 5). By definition, as the number of clusters increases
the within cluster variation will decrease; our goal, then,
is to identify the smallest cluster number that sufficiently
minimizes the within-cluster variation. We selected K
= 3, since further increasing the cluster number mini-
mally decreased the total within cluster variation. Expert
knowledge, thus, is required in the selection of K and the
interpretation of this, or any, clustering solution.
An alternative clustering approach to k-means is hierar-

chical clustering. The output of hierarchical clustering is
a dendrogram, which is an upside-down tree-based rep-
resentation of the clustered observations. At the bottom
of the tree, the observations are represented by leaves
which then fuse into branches moving up the tree. Early
fusions (closer to the bottom) indicate more similarity
among the observations relative to later fusions (higher

https://github.com/lizzyagibson/Mixtures.Workshop.2018
https://github.com/lizzyagibson/Mixtures.Workshop.2018
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up in the tree) [10, 11]. Various dissimilarity measures
can be use to group observations in a dendogram [10],
here we used complete linkage which uses the largest dis-
similarity between the observations of two given clusters.
Complete linkage tends to yield more balanced dendo-
grams with defined clusters that are easier to visualize.
A single tree can be used to obtain different numbers of
clusters depending on the height at which it is cut. There
is no metric to determine the best height to cut, and this
process is subjectively based on visual analysis of the den-
grogram. Here we cut the tree at a height of 11.25 to obtain
three main clusters. We tried different heights to obtain
two, three, and four clustered trees. The three clustered
tree yielded the most balanced clusters; thus, we selected
this solution for the health model analysis. Since there is
not a consistently-used rule for selecting K or the height
at which to cut a dendogram, it is important to try several
options and consult experts on the topic at hand to better
interpret the solution.
For both k-means and hierarchical clustering, we

included cluster membership as a categorical exposure
of interest in a multiple linear regression (controlling for
covariates) to estimate the association between cluster
membership and log-LTL.

Principal Component Analysis (PCA) is another
dimensionality reduction method based on the correla-
tion matrix of the variables. In mixtures analyses, PCA
can be used to identify common patterns in the exposure
variables or observations; these can either represent
common sources of the chemicals in the mixtures or
common behaviors in the population. PCA aims to
explain the total variance with fewer variables by creating
new uncorrelated variables (principal components, PCs)
based on linear combinations of the original variables.
Each PC explains a percentage of the total variance
with the first PC set to account for most of the total
variance. Each subsequent component is determined as
the one that explains most of the remaining variance
and is orthogonal to (i.e., not correlated with) the pre-
vious components [10]. As PCA depends on variance to
decompose a dataset, it is best to standardize the data
first to make all chemical contributions equal and avoid
allowing those with larger variances to disproportionately
inform the solution. The PCA solution results in as many
PCs as variables in the original matrix, making the choice
of number of PCs to include in descriptive statistics or
models subjective. One commonly used criterion is the
percentage of variance explained (e.g., retain PCs suffi-
cient to explain 80% of the variance). Another option is to
visualize the results to determine where the decrease of
explained variability by each added component levels off.
In some applications, 65% of the total variance might be
acceptable, while others might require >85%. Ultimately

the choice will depend on the research question, overall
objective, and interpretability of the solution. For the
PCA analysis presented here, we a priori decided to select
those PCs that accounted for ≥75% of the total variance.
We then simultaneously included the PC scores (for PC1,
PC2, and PC3) as continuous exposures in a multiple
linear regression (controlling for covariates) to estimate
the association with log-LTL.

Exploratory Factor Analysis (EFA) assumes that the
chemical concentrations arise from a specific number
of unobserved (i.e., latent) factors. These latent factors
represent common sources of variation among the expo-
sure variables, accounting for their correlation structure.
Uncorrelated error terms specific to each exposure vari-
able account for the remaining unique variation [11]. EFA,
thus, naturally lends itself to exposure pattern identifi-
cation in mixtures analyses. Although EFA does not aim
to explain the total variance in the data, like PCA, and
instead aims to identify common sources of variation in
the data, the solutions of both methods are often similar.
The u2 estimates the “uniqueness” of the original vari-
ables, i.e., it measures the variance that is “unique” to
the variable and not explained by the estimated factors.
A high u2 implies that much of a variable’s variance is
not explained by the factors. Due to EFA’s dependence on
variance, it is also good to first standardize the dataset.
Since the “true” originating mechanism is almost never
known, neither model can provide the “correct” answer.
Thus, both models should be used in conjunction with
expert knowledge. For our analysis, we ranmodels with 2–
5 factors with both orthogonal and oblique (i.e, correlated)
rotations. We chose the model with the lowest empiri-
cally derived Bayesian Information Criterion (BIC) and
the oblique rotation to enhance interpretability. Because
environmental exposures are expected to be correlated,
the oblique solution allows for more realistic results. As
with the PCA results, we ran a health model to estimate
the association between continuous factor scores (simul-
taneously included in the model) and log-LTL, adjusting
for covariates.

Supervisedmethods
Variable Selection determines which variables (here
exposures) of a given set are most predictive of an
outcome of interest to fit a single, more parsimonious
regression model containing solely those variables [10].
Variable selection algorithms, thus, can be used in mix-
tures analyses to potentially identify the toxic agent(s) in
the mixture. Variable selection is often used to improve
prediction accuracy—with which environmental epidemi-
ologists may not be concerned. However, in the presence
of highly correlated exposures, these methods perform
better than traditional regression methods and may
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provide a more interpretable solution [11]. Because a
model that contains any subset of p candidate exposures
has 2p possible subsets of the total number of exposures
(e.g., for this analysis p = 18; we would therefore need
to consider 262,144 models, even before considering any
interactions), trying every possible combination of expo-
sures is infeasible and statistically unsound due tomultiple
comparisons. Instead, variable selection approaches pro-
vide an automated and efficient approach to better choose
a smaller set of the exposure variables [10].
Lasso (least absolute shrinkage and selection operator)

is a variable selection method that uses a penalty term to
constrain the linear regression model with respect to the
sum of the absolute values of the coefficients, shrinking
some of them to zero [12]. The goal of lasso is to minimize
the prediction error by keeping only those variables that
are the most relevant to the outcome. The penalty term
depends on a tuning parameter, λ: if λ = 0, all variables
are included in the model; as λ → ∞, all variables are
zeroed out [10, 11]. Here, we selected λ by minimizing the
cross-validated prediction error. We only penalized the
POP variables; the rest of the covariates were forced into
the model to control for confounding bias. We then used
the best λ value obtained from cross-validation to identify
the POP variables with non-zero coefficients, that is, the
variables that best predict the outcome (log-LTL). Before
applying lasso, or any penalized method, it is important to
standardize all predictors. This is because these methods
include the coefficients—but not predictors (i.e. the expo-
sures corresponding to the coefficients)—in their penalty
terms, so the estimated coefficients depend on the scale of
these exposures.
One drawback of lasso is that if the exposures are cor-

related (as they often are in environmental health applica-
tions), lasso will select a single variable from the correlated
exposure matrix, increasing bias. Elastic net is a variable
selectionmethod, similar to lasso, that addresses this issue
by encouraging grouping of correlated variables [10, 13].
Specifically, it allows coefficients of highly correlated vari-
ables to shrink towards each other instead of shrinking
all except one entirely to zero. Elastic net achieves this by
including a second penalty term, the sum of the squared
coefficients, in addition to the sum of the absolute values
[11, 13]. This requires a second tuning parameter, assign-
ing λ a non-negative value over a grid of α values on [ 0, 1]
(in lasso, α = 1 by default; if α = 0, coefficients will
approach, but will not reach zero) [14]. Here, we selected
the best α and λ values based on minimization of the
cross-validation prediction error, then used those values
to identify the POP variables with non-zero coefficients.
With some prior information regarding groups of cor-

related exposures, another alternative to lasso is group
lasso. For this method, the researcher needs to specify
group membership for all exposures, and the penalty term

is applied at the group level. In this way, all exposures
within a group are either zeroed-out or not, and no single
correlated exposure within an assigned group is separated
from the rest. The penalty is a function of the number of
exposures within each group, thus larger groups are penal-
ized more [11]. We created three groups to correspond
with the grouping used byMitro et al. [2]: non–dioxin-like
PCBs (eight PCBs with no toxic equivalency factor (TEF)
and no AhR affinity: PCBs 74, 99, 138, 153, 170, 180, 187,
and 194), non-ortho PCBs (two non–ortho-substituted
PCBs with high TEFs and high AhR affinity: PCBs 126
and 169), and toxic equivalent POPs with moderate to
high TEFs and AhR affinity(mono-ortho-substituted PCB
118, four dibenzo-f urans, and three chlorinated dibenzo-
p-dioxins), here refer to as mPFD. We only penalized the
POP variables (assigning all non-exposure covariates to a
separate group that was forced in the model) and chose
the best λ value by cross-validation to identify the POP
variables with non-zero coefficients.

Weighted Quantile Sum Regression (WQS) aims to
assess the overall impact of a mixture on a specific out-
come. It creates an empirically-weighted index of chemi-
cals based on their quantiles and includes the index as a
single exposure term in a regression model. The weighted
index represents the overall mixture, and the chemical-
specific weights are interpreted as relative variable impor-
tance levels using similarly scaled variables (e.g., quantiles;
deciles were used herein), identifying potentially toxic
agents [15–17]. WQS estimates variable weights using
bootstrapped samples from a training set, then tests the
effect of the weighted index in a separate test set [15].
A nonlinear numerical optimization algorithm estimates
weights (constrained to be between 0 and 1 and to sum
to 1) for each bootstrap sample in the training set. The
final index is defined based on the weighted average for
the weights across the bootstrap samples. For example,
the average may be weighted based on the relative signal
from each bootstrap sample (i.e., based on the test statis-
tic for the beta coefficient for the index) [15, 18, 19]. The
significance of the defined weighted quantile sum index
is tested using the separate test set (generally, 60% of the
sample size). We set an a priori cut-point for identify-
ing important toxic agents (in case the coefficient for the
index was significant) as a weight ≥ 1/p = 1/18 = 0.06,
i.e., weights that exceed the case of uniform weights. This
cut-point is meant as a guideline; other weight aspects,
such as variability and percent variance explained, should
also be considered. WQS includes a further directionality
constraint on the mixture members (but not the covari-
ates), evaluating components in the direction of increased
risk in an effort to improve interpretability of the weighted
index [15]. For our analysis, we constrained the model in
the positive direction.
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Bayesian Kernel Machine Regression (BKMR) is a
semi-parametric technique, incorporating the benefits of
both parametric (e.g., fewer parameters to estimate) and
non-parametric (e.g., flexibility) methods into one model.
BKMR flexibly models the combined effects of different
chemicals, while allowing for nonlinear effects as well
as interactions among them. Specifically, BKMR allows
researchers to examine (1) whether the exposure to the
mixture is associated with the outcome of interest; (2)
the exposure-response relationships between individual
chemical exposures and outcome; and (3) whether the
components of the mixture interact. It includes the chem-
icals of interest in a non-parametric Gaussian kernel
function within a Bayesian regression model [20–22]. The
kernel does not impose a functional form on the exposure-
response relationship, thus capturing a wide range of rela-
tionships, including nonlinear exposure-response func-
tions and nonlinear and non-additive interactions among
all mixture members [20, 23]. BKMR can perform either
component-wise or hierarchical variable selection. Here,
we employed hierarchical variable selection, which pro-
vides group importance scores (Posterior Inclusion Prob-
abilities, PIPs) for pre-defined mutually-exclusive groups
of variables, in addition to estimating the importance of a
congener given that the group that contains that congener
is important (conditional PIPs) [20–22]. For our analysis,
we grouped the POPs into three groups—non-dioxin-like
PCBs, non-ortho PCBs, and mPFD—as in the group lasso
model. We additionally standardized all continuous vari-
ables (log-POPs, log-LTL, age, log-cotinine, and blood
cell count and distribution) to improve computational
efficiency.

Results
Population demographics and congener concentration
levels can be found in Additional file 1: Tables S4 and
S5, respectively. POPs are moderately to highly corre-
lated (Fig. 1). Spearman correlation coefficients within
the non-dioxin-like PCBs are all ≥ 0.65 and as high as
0.98; correlations within the mPFD group range from 0.22
to 0.79; and the two non-ortho PCBs have a correlation
of 0.55.

Unsupervised methods
We present the results from all unsupervised methods in
Table 1.

Clustering
The clusters obtained by k-means and hierarchical clus-
tering resulted in similar grouping patterns. In both
methods, cluster 1 included participants with POP con-
centrations above the population average, cluster 2
included participants with POP concentrations close to
the population average, and cluster 3 contained those

participants with POP concentrations below the popula-
tion average (Fig. 2).
Using cluster 3 as the reference (participants with POP

concentrations below the population average), cluster 1
membership (participants with POP concentrations above
the average) is significantly associated with longer log-LTL
(βk-means = 0.08, 95%CI = 0.03, 0.13; βhierarchical = 0.05,
95%CI = 0.01, 0.10). This means that on average, members
of k-means cluster 1 are expected to have longer log-LTL
by 0.08 than members of cluster 3. Participants in cluster
2 (those with close to average exposures) have marginally
longer log-LTL, on average, compared with the reference
group (βk-means = 0.05, 95%CI = 0.02, 0.09; βhierarchical =
0.03, 95%CI = -0.002, 0.07). Among the non-POP vari-
ables, increasing age and the sex category male have a
significantly negative association with telomere length in
both models, as expected [24–26].

Principal component analysis
Using PCA, we identified three PCs which account for
79.7% of the total variability in POP exposure. The
first PC had similar moderate variable loadings for all
POPs in the same direction. The second PC sepa-
rated the POPs by group: negative moderate loadings
for all non-dioxin-like PCBs and non-ortho PCB 169,
positive mainly high loadings for all mPFDs and non-
ortho PCB 126. The third PC has high loadings for
1,2,3,4,6,7,8-hxcdf (mPFD), non-ortho PCB 126, and PCB
118 (mPFD) (Additional file 1: Figure S2). This means
that PC1 scores decrease when all POPs increase; PC2
scores increase when mPFD congeners increase and non-
dioxin-like PCBs decrease; and PC3 scores increase when
PCB 126, and PCB 118 increase and 1,2,3,4,6,7,8-hxcdf
decreases.
PC2 (βPC2 = 0.001, 95%CI = -0.01, 0.01) and PC3 (βPC3

= 0.002, 95%CI = -0.01, 0.02) were not associated with
log-LTL. PC1 (βPC1 = -0.01, 95%CI = -0.02, -0.01) was sig-
nificantly negatively associated with log-LTL. Per one unit
increase in PC1 score, log-LTL decreases by 0.01; since
all POPs have negative loadings on PC1, this means that
an increase in all POPs is associated, on average, with a
0.01 increase in log-LTL. As in the clustering methods,
increasing age and the sex category male are also nega-
tively associated with the outcome.

Exploratory factor analysis
We chose the four-factor model based on its empiri-
cally derived BIC and the oblique rotation to enhance
interpretability. The first factor had high variable load-
ings on most non-dioxin-like PCBs (PCBs 138, 153, 170,
180, 187, and 194), one non-ortho PCB (PCB 169), and
one dioxin (1,2,3,6,7,8-hxcdd). The second factor had high
loadings on all four furans. The third factor had high
loadings on two non-dioxin-like PCBs (PCBs 74 and 99),
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Fig. 1 Correlation heatmap of lipid-adjusted POPs (p = 18) across participants in NHANES 2001–2002 (N = 1,003). Spearman correlation coefficients
presented for untransformed distributions, sectioned according to groupings in the original [2] paper

one mPFD (PCB 118), and one non-ortho PCB (PCB
126). The fourth factor had high loadings on two dioxins
(1,2,3,4,6,7,8-hpcdd, and 1,2,3,4,6,7,8,9-ocdd) (Additional
file 1: Figure S3). The factors were moderately (r = 0.38
between factors one and four) to highly (r = 0.74 between
factors one and three) correlated. Together, these fac-
tors explained 79.0% of the common variability. Furan
1,2,3,4,6,7,8 hxcdf and PCB 126 were the most unique
(u2 = 0.63 and 0.51, respectively), indicating that most
of the variance in these two variables is not shared with
other variables in the overall factor model. We included
individual factor scores in the health model as four con-
tinuous variables, controlling for covariates. Factor one
(βF1 = -0.003, 95%CI = -0.03, 0.03) was not associated

with log-LTL. Factor four (βF4 = -0.02, 95%CI = -0.04,
0.001) was negatively, but non-significantly associated
with log-LTL. Factors two (βF2 = 0.03, 95%CI = 0.004,
0.05) and three (βF3 = 0.03, 95%CI = 0.01, 0.05) were sig-
nificantly positively associated with log-LTL. This means
that a one-unit increase in Factor 2 score was associated,
on average, with a 0.03 increase in log-LTL. Increasing
age and male sex were, again, negatively associated with
log-LTL.

Supervised methods
Variable selection
For lasso, the best λ value obtained from cross-validation
is 0.0034. Using this λ in the lasso model generated



Gibson et al. Environmental Health           (2019) 18:76 Page 8 of 16

Table 1 Summary results of health models for the unsupervised
methods: (K-means clustering, hierarchical clustering, PCA, and
EFA)

Variable β 95% CI P-value

K-means clustering

Cluster 1 (high exposure) 0.08 0.03, 0.13 0.001

Cluster 2 (medium exposure) 0.05 0.02, 0.09 0.005

Cluster 3 (low exposure) Reference —

Hierarchical clustering

Cluster 1 (high exposure) 0.05 0.01, 0.10 0.03

Cluster 2 (medium exposure) 0.03 -0.00, 0.07 0.06

Cluster 3 (low exposure) Reference —

Principal Component Analysis

PC1 -0.01 -0.02, -0.01 < 0.001

PC2 0.001 -0.01, 0.01 0.87

PC3 0.002 -0.01, 0.02 0.76

Exploratory Factor Analysis

FA1 -0.003 -0.03, 0.03 0.86

FA2 0.03 0.00, 0.05 0.02

FA3 0.03 0.01, 0.05 0.01

FA4 -0.02 -0.04, 0.00 0.06

non-zero coefficients for four of the 18 POP variables
(Fig. 3): PCB 99, a non-dioxin-like PCB with no TEF
and no AhR affinity (β = 0.001), PCB 118, included in
mPFD (β = 0.003), furan 2,3,4,7,8-pncdf (β = 0.02, i.e., a
one standard deviation increase in furan 2,3,4,7,8-pncdf is
associated with a 0.02 unit increase in log-LTL), and PCB
126, a non-ortho PCB (β = 0.013).
With elastic net, we estimated α = 0.8 and λ = 0.0039

from cross-validation, similar to the λ chosen for the lasso
model. The elastic net model using these λ and α val-
ues generated non-zero coefficients for five of the 18 POP
variables (Fig. 3). The same four variables selected by lasso
(PCB 99 (β = 0.002), PCB 118 (β = 0.004), furan 2,3,4,7,8-
pncdf (β = 0.02, i.e., a one standard deviation increase
in PCB 126 is associated with a 0.01 unit increase in log-
LTL), and PCB 126 (β = 0.01), plus furan 1,2,3,4,6,7,8
hxcdf (β = 0.0001). Overall, the lasso and elastic net
models selected almost the same congeners and estimated
similar variable coefficients, which is not surprising given
the high α value and very similar λ values.
Based on cross-validation, we chose a λ value of 0.006

for the group lasso model. Group lasso pushed the eight
coefficients for non-dioxin-like PCBs to zero, with non-
zero coefficients for the two non-ortho PCBs and the
eight mPFDs (Fig. 3). Increases in both non-ortho PCBs
predicted longer log-LTL (PCB 126 β = 0.01, PCB 169
β = 0.008). This means that a one standard deviation
increase in PCB 169 is associated with a 0.01 unit increase

in log-LTL. Increases in three furans (2,3,4,7,8-pncdf β

= 0.01, 1,2,3,4,7,8-hxcdf β = 0.003, 1,2,3,4,6,7,8-hxcdf
β = 0.006) were associated with longer log-LTL, while
increased furan 1,2,3,6,7,8-hxcdf (β = -0.005) was associ-
ated with shorter log-LTL. Increased exposure to dioxin
1,2,3,4,6,7,8-hpcdd (β = 0.002) was associated with longer
log-LTL, but the two other dioxins (1,2,3,6,7,8-hxcdd (β =
-0.004), 1,2,3,4,6,7,8,9-ocdd (β = -0.008)) were associated
with shorter log-LTL. PCB 118 (β = 0.004) was associated
with longer log-LTL. Increasing age and male sex were
negatively associated with log-LTL in all variable selection
models.

Weighted quantile sum regression
The coefficient for the mixture index in the WQS model
was positive (β = 0.02, 95%CI = 0.01, 0.03). As the over-
all mixture effect was statistically significant, individual
POP weights can be interpreted as variable importance
factors. Six POPs had weights ≥ 0.06 (Fig. 4), three
furans (1,2,3,4,6,7,8-hxcdf weight = 0.19, 2,3,4,7,8-pncdf
weight = 0.16, and 1,2,3,6,7,8-hxcdf weight = 0.12), both
non-ortho PCB (PCB 169 weight = 0.14 and PCB 126
weight = 0.07), and one non-dioxin-like PCB (PCB 99
weight = 0.06). These congeners were the largest contrib-
utors to the mixture effect, with the first six congeners
explaining 75% of the total weights. In the WQS model,
increasing age and male sex were negatively associated
with log-LTL.

Bayesian kernel machine regression
In the BKMR model, the mPFD group had the high-
est PIP (=0.87), making it the most important group
in the mixture. The next most important group was
the non-ortho PCBs (PIP = 0.62), followed by non-
dioxin-like PCBs (PIP = 0.42). Within the mPFD group,
furan 2,3,4,7,8-pncdf contributed the most to the model
(conditional PIP = 0.88). The next most important
POP in the mPFD group, PCB 118, had a conditional
PIP of 0.06. In the non-ortho PCB group, PCB 126
contributed more (conditional PIP = 0.65) than PCB
169 (conditional PIP = 0.35). Within the non-dioxin-
like PCBs, PCB 170 had the highest PIP (conditional
PIP = 0.17).
The independent congener associations all appear rel-

atively linear (Fig. 5). One furan (2,3,4,7,8-pncdf) was
statistically significantly associated with log-LTL, and
there was suggestive evidence of positive associations with
PCBs 126 and 169. Other congeners also had positive
associations (PCBs 99, 118, and furan 1,2,3,4,6,7,8-hxcdf);
some appeared to have negative associations (PCB 180
and dioxin 1,2,3,4,6,7,8,9-ocdd), and many had no associ-
ation (PCBs 74, 138, 153, 170, 187, and 194, two dioxins,
1,2,3,6,7,8-hxcdd and 1,2,3,4,6,7,8-hpcdd, and two furans,
1,2,3,4,7,8-hxcdf and 1,2,3,6,7,8-hxcdf). We observed no
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Fig. 2 Clusters from k-means clustering. Mean level of POPs (p = 18) in three clusters of participants in NHANES 2001–2002 (N = 1,003). Points
represent overall population average for each congener. Values are in log-transformed pg/g lipid. The color scheme represents the groupings from
the original [2] paper

interaction among mixture members (Additional file 1:
Figures S4 and S5), but we did find a significant overall
mixture effect, with higher exposure to the mixture asso-
ciated with longer log-LTL (Fig. 5). Parameter estimates
for increasing age and male sex were negative.

Discussion
Using the methods presented here as a toolbox, we
demonstrate the range of potential research questions that
can be addressed using a single dataset, as well as the
importance of defining the research question and select-
ing the appropriate method for analysis a priori (Table 2).
We aim to show that results across methods—though
not always comparable—can be complementary and, in
our example, show a degree of consistency. Unsupervised
methods all addressed research questions pertaining to
dimensionality reduction and pattern recognition, which
can help identify exposure sources or shared behaviors.
Since clusters, PCs, and factors are not based on a health
outcome, they will be the same regardless of the health
outcome being considered. Supervised methods answer

research questions concerning associations with a specific
health outcome and can help identify potentially toxic
agents in a mixture, synergistic activities among a mix-
ture’s components, or estimate the overall mixture effect
on a specific health outcome. In this case study, sim-
ilar conclusions can be drawn from unsupervised and
supervised approaches: an overall mixture effect is found
using multiple methods, and the same individual con-
geners are identified as toxic across analyses. However, it
is important to note that such consistent interpretation of
the various results is not always guaranteed, and expert
knowledge is required to interpret the solutions of both
supervised and unsupervised methods.
Beginning with unsupervised methods, we applied (1)

clustering to group individuals by similar exposure pro-
files, which can help identify shared behaviors; and (2)
PCA and EFA to identify the major sources of variation
in the data, which can answer questions regarding expo-
sure patterns. Both k-means and hierarchical clustering
grouped individuals by high, medium, or low exposure
across POPs, indicating a significantly positive overall
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Fig. 3 Coefficients for POPs (p = 18) from variable selection models. Models adjusted for age, age2, sex, race/ethnicity, educational attainment, BMI,
serum cotinine, and blood cell count and distribution. All POP concentrations (pg/g) were log-transformed and standardized. The color scheme
represents the groupings from the original [2] paper
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Fig. 4 Variable weights from the WQS index. Barplot shows weights assigned to each congener. Model adjusted for age, age2, sex, race/ethnicity,
educational attainment, BMI, serum cotinine, and blood cell count and distribution. The color scheme represents the groupings from the original [2]
paper. The dashed line at 0.06 indicates the cut-point for identifying potentially toxic agents

mixture effect. PCA identified three components that
explained the majority of the variation in the data: a
component with moderate loadings from all POPs, a com-
ponent that separates non-dioxin-like PCBs from mPFD
congeners, and a third more mixed component. EFA
identified four underlying sources of common variation,
grouping POPs generally by their respective classes as
non-dioxin-like PCBs, furans, dioxins, and a mixture of
those remaining. Among the supervised methods, vari-
able selection methods can help identify potentially toxic
agents in a mixture. All three methods employed here
(lasso, elastic net, and group lasso) identified PCB 126,
PCB 118, and furan 2,3,4,7,8-pncdf as those congeners
most strongly associated with increased log-LTL. WQS
aims to quantify the overall effect of a mixture and the
importance of mixture members. With WQS, we found a
significantly positive overall mixture effect and identified
furans 1,2,3,4,6,7,8-hxcdf, 2,3,4,7,8-pncdf, and 1,2,3,6,7,8-
hxcdf, as well as PCBs 169, 126, and 99 as potentially
toxic agents. BKMR answers research questions about

independent effects of mixture members, interactions
among them, and the overall mixture effect. BKMR iden-
tified furan 2,3,4,7,8-pncdf, PCB 126, and PCB 169 as the
most toxic congeners in the mixture and found a signifi-
cantly positive overall mixture effect, but no nonlinearities
or interactions.
It is usually not easy to draw conclusions across results

from models used to answer different research questions,
as results are not comparable. However, we were able
to identify some reassuring consistencies across analy-
ses. This is likely the case because in these particular
data the associations all appear linear with no evidence
of interactions, so the assumptions from all the imple-
mented models are reasonable. In other cases in which
this is not true, there will likely be greater differences
in results across models, and the exploration of these
differences, together with the knowledge of what each
approach assumes, can point the user to identify features
in the exposure-response relationship that might not be
discovered otherwise.
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a b

Fig. 5 a Congener-specific effect estimates of mixture members on log-LTL in NHANES 2001–2002 participants estimated by BKMR. Single
congener associations and 95% credible bands are presented with other POPs fixed at their median. b Overall effect of the mixture on log-LTL
(estimates and 95% credible intervals), comparing log-LTL when all exposures are at a particular quantile to the median. The model adjusted for age,
age2, sex, race/ethnicity, educational attainment, BMI, serum cotinine, and blood cell count and distribution. All congener concentrations (pg/g)
were log-transformed and standardized

Older age and male sex were negatively associated with
log-LTL across all analyses, as expected [24–26]. In pat-
tern identification, the resulting health models followed
the directionality expected based on Mitro et al.’s findings
[2]. Health models including clusters estimated associa-
tions between higher exposures and log-LTL; health mod-
els including PCs estimated an association between the
general POP exposure PC and log-LTL; and health models
including factors estimated associations between log-LTL
and factors consisting of furans, mono-ortho PCBs, and
non-ortho PCBs. Variable selection models, WQS, and
BKMR all identified furan 2,3,4,7,8-pncdf and PCB 126 as
potentially toxic agents. Group lasso, WQS, and BKMR
all identified PCB 169 as potentially toxic, as well. WQS
and BKMR both estimated a significantly positive overall
mixture effect, an interpretation that could also be drawn
from the clustering results, in this specific analysis.
Though we included a continuous outcome measure

in these analyses, all methods discussed can accommo-
date different outcome distributions and study designs.

Unsupervised methods may be used in a two-stage anal-
ysis with any health model of choice. Variable selection
models can also be implemented on binary, categorical,
count, and time-to-event data, and can also accommodate
clustering in the outcomes, e.g., repeated measures. WQS
and BKMR have both been extended to included binary
outcomes, with more extensions in progress, such as for
survival analyses [27].
Please note that, from a toxicity perspective, mono-

ortho PCB 118 should stand alone, instead of being
grouped with furans and dioxins [28]. This, however,
would complicate comparison with the original Mitro et
al. paper [2]. A priori grouping only affects results from
group lasso and hierarchical BKMR—for biological cor-
rectness, we changed the groupings in these two models,
separating PCB 118 into its own group. The BKMR results
did not noticeably change (results not shown). The group
lasso results were equivalent in direction and magnitude,
with the exception that the PCB 118 coefficient was much
larger in the 4-group solution (results not shown). This is
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Table 2 Summary of methods, research questions best answered, and findings

Method Research Question Results

Unsupervised Methods

K-means Clustering
Hierarchical Clustering

Are there population subgroups that share similar
exposure profiles?

The study population is clustered by level of
exposure: high, average, and low. High exposure is
associated with longer log-LTL.

PCA
Are there specific patterns in POP exposure?

Three patterns of exposure were identified. Exposure
to all POPs (PC1) is associated with longer log-LTL.

EFA Four patterns of exposure were identified. Exposure
to all four furans (FA2) and to PCBs 118 and 126 (FA3)
is associated with longer log-LTL.

Supervised Methods

Lasso
Which congeners are associated with changes in log-LTL?

PCB 99, PCB 118, PCB 126, and furan 2,3,4,7,8-pncdf
are associated with longer log-LTL.

Elastic Net PCB 99, PCB 118, PCB 126, furan 2,3,4,7,8-pncdf, and
furan 1,2,3,4,6,7,8 hxcdf are associated with longer
log-LTL.

Group Lasso Which a priori defined congener groups are
associated with changes in log-LTL and what is the
magnitude of the association with congeners within
those groups?

All mPFD congeners are associated with log-LTL, with
variability in direction—five mPFDs with longer
log-LTL, and three mPFDs with shorter log-LTL.
Non-ortho PCBs (PCBs 126 and 169) are associated
with longer log-LTL.

WQS What is the overall effect of the mixture on log-LTL?
What congeners are most important?

The mixture index is associated with longer log-LTL.
Three furans and both non-ortho PCBs are important
mixture members. Furans 1,2,3,4,6,7,8-hxcdf and
2,3,4, 7,8-pncdf has the largest weights.

BKMR Is there an association between the mixture and
log-LTL? What is the exposure-response relationship
between each congener and log-LTL? Are there
interactions between congeners?

The overall mixture is associated with longer log-LTL.
Furan 2,3,4,7,8-pncdf, PCB 126, and PCB 169 are
independently associated with longer log-LTL. No
interactions or nonlinearities were found.

All 18 congeners were included in all unsupervised and supervised models

expected as smaller groups receive a smaller penalty [11].
Additionally, we used the sample-specific LOD divided
by the square root of two for values below the LOD to
enhance comparability with the original analysis. Mitro
et al. performed sensitivity analyses with multiple impu-
tations examining the effects of the treatment of data
below the LOD on the overall results and found that single
substitution did not meaningfully alter the findings [2].
While our results are generally consistent with those of

Mitro et al. [2], their study addressed a different research
question. They used expert knowledge to group POPs
into three categories: non-dioxin-like PCBs with no TEFs,
non-ortho PCBs with high TEFs and high AhR affinity,
and mPFD congeners which include furans and dioxins
with high TEFs and high AhR affinity, and one mono-
ortho PCB. With these a priori defined groups, their
analysis did not intend to identify specific toxic agents,
interactions, or quantify the overall effect of the mixture.
Mitro et al. found that the non-dioxin-like PCB group,
when controlling for non-ortho PCBs, had no effect on
log-LTL [2]. Our lasso, elastic net, and WQS models
identified the non-dioxin-like PCB 99 (out of eight) as
a potentially toxic agent, but when grouped together in

group lasso and BKMR, associations were null. Mitro et
al. also found significant associations between mPFD and
non-ortho PCB groups and log-LTL [2]. Their analysis
did not aim to select toxic agents from these groups, but
our analyses identified some members of these groups
as toxic agents. This comparison highlights differences
between biologically- and data-driven approaches. Mitro
et al. weighted non-ortho PCBs and mPFD congeners
by their respective TEFs, creating a weighted index [2].
This allowed for a biologically meaningful grouping strat-
egy that is not easy or always feasible to replicate with
other mixtures, as most chemicals do not have a TEF ana-
log. When not much is known about the chemicals in
a mixture, data-driven methods are necessary to address
the statistical issues inherent in mixtures. However, when
more is known about a mixture, comparing data-driven
to biologically-driven approaches and incorporating bio-
logical information into data-driven approaches can yield
more interpretable and reproducible results.
To the best of our knowledge, a couple of papers have

been published comparing different methods for environ-
mental mixtures, one assessing in utero phthalate expo-
sure and birth weight, and one on exposure to metals and
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cardiovascular disease [29, 30]. Although these are sig-
nificant contributions to the field of mixtures methods
in environmental health, they do not focus on describing
why different approaches are more appropriate for differ-
ent research questions, nor when each method should be
used [31].
Each method discussed, however, comes with its own

limitations. All unsupervised methods are somewhat sub-
jective. While there are “guidelines” and indices for
choosing the right number of clusters, PCs, or factors,
the ultimate decision relies on expert knowledge and
interpretable results, and different researchers are bound
to make different choices. Including cluster membership,
PC scores, or factor scores in the health model (as we
did, here) ignores the uncertainty inherent in the solu-
tion selection, resulting in underestimated confidence
intervals and, potentially, spurious results [32]. Cluster-
ing, further, reduces a high-dimensional exposure matrix
to a single categorical variable, resulting in a substantial
loss of information. Both PCA and EFA assume linear
combinations of variables and do not allow for poten-
tial interactions between mixture members in the pattern
identification. PCA solutions, specifically, are not easily
interpretable—even with expert knowledge, PCs are not
always intelligible—and the orthogonal solution is often
not realistic for environmental mixtures. For variable
selection, the inability to estimate confidence intervals as a
means of gauging uncertainty in the estimates is a consid-
erable limitation. To address this, some researchers have
implemented a two-step process, inserting the variables
selected from a penalization method into a traditional
regression model. This will yield invalid inferences, as the
uncertainty of the first step is not propagated into the
second, and the coefficients from penalized methods are
unlikely to equal those from traditional regression—they
may even be in opposite directions [12]. Furthermore, the
dependence of the estimated coefficients on the scaling of
the predictors, and—in the case of the group lasso—on
the size of the group, may greatly hinder interpretability
of these estimates. WQS categorizes continuous variables
into quantiles to reduce the impact of extreme concen-
trations; however, the quantiles reduce the amount of
information in the exposure matrix. The effects of all
mixture members must be in the same direction, and no
corresponding effect estimates are given for potentially
toxic agents, only variable importance weights. Neither
WQS nor variable selection methods allow for interac-
tions, unless hard-coded by the researcher. And WQS’s
reliance on both training and testing sets further requires
a sufficiently large sample size. BKMR demands a large
sample size, as well, because of the non-parametric ker-
nel function. Instead of reducing the problem to a few
coefficients, the kernel estimates the smooth shape of
the mixture-response relationship, resulting in less power

for a given sample size. Furthermore, this process is
quite computationally expensive compared with the other
methods discussed here. A table detailing the advantages,
disadvantages, assumptions, and required outcome distri-
butions for each method is included in Additional file 1:
Table S2.
Moreover, though these methods address many of the

traditional regression short-comings, they fail to over-
come limitations that are shared by all environmental
mixtures methods. For the incorporation of missing
data, these methods—like traditional regression—require
complete case analysis, but all—even the most compu-
tationally intensive—can be combined with a multiple
imputation procedure to allow for uncertainty concern-
ing missingness. Especially when biomarkers are used, the
timing of sample collection with respect to exposure—
and potentially critical windows of exposure—and the
half-lives of analytes must be considered. All supervised
approaches are at risk of selecting a chemical with high
concentrations during both the critical window of expo-
sure and sampling which co-occurred with the toxic
agent. If the actual toxic agent has a short half-life, it
may be below the LOD at sampling or have an exces-
sively noisy measurement depending on the variation in
time between the critical window and sampling. Given
varying measurement error across and high correlation
between mixture members, any statistical method will
choose a chemical measured with less error than the
toxic agent, as long as the two are correlated [33, 34].
It is even possible that the mixture of interest does
not include the actual toxic agent(s), or that the toxic
agent does not provide an adequate number of mea-
surements above the LOD. In all these cases, focusing
on toxic agent(s) will lead to wrong conclusions and
incorrect identification, regardless of the method. Mix-
tures including only a small number of mixture mem-
bers may amplify these issues due to residual confound-
ing from correlated, unmeasured co-pollutants, but even
in larger mixtures, correlated exposure variables may
amplify rather than reduce confounding bias from shared
sources [35]. Finally, the mixture in this example was
only comprised of lipophilic species, but combinations
of lipophilic and hydrophilic species may result in
enhanced and more pronounced toxicity, especially at low
concentrations.

Conclusion
Throughout the Workshop and this paper, we stressed
the importance of choosing the correct mixtures method
to answer a specific research question, as the results of
different methods are interpreted quite differently. Thus,
the aim of this Workshop and paper was to instruct
environmental health researchers in methods to address
several distinct types of mixtures questions, when to use
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these methods, and how to implement them. The results
of the methods employed are not directly comparable, but
they are generally consistent with each other and with the
more biologically-driven results of Mitro et al. in identify-
ing the mixture, or individual mixture members, as toxic
[2]. To-date, and to the best of our knowledge, no sin-
gle method exists to answer all mixtures questions, but
with a well-defined research question and modern mix-
ture methods, researchers are better equipped to explore
complex relationships between environmental mixtures
and adverse health outcomes.

Additional file

Additional file 1: Supplemental description of methods and additional
tables and figures. Table S1 Useful resources for included methods. Table
S2 Overview of method characteristics. Table S3 POP characteristics.
Table S4 Demographic Characteristics. Figure S1 Hierarchical clustering
dendrogram. Figure S2 PCA loadings. Figure S3 EFA loadings. Figure S4
BKMR Interactions (Plot 1). Figure S5 BKMR Interactions (Plot 2). (PDF 1233
kb)
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